性能評価

記事数:(3)

LLM

生成AIの性能評価:様々な手法

近頃話題の文章などを作り出す人工知能の性能を確かめる方法の一つに、人の目で評価する方法があります。これは、人工知能が私たちが期待する通りに動いているかを、人が直接確かめる方法です。 具体的には、人工知能が作った文章の文法に誤りがないか、意味がちゃんと伝わるかなどを評価します。例えば、「今日の空模様は」という書き出しに続く文章として、「雲ひとつない晴天です」と人工知能が作ったとします。この時、文法的に正しく、意味も通じる文章なので、良い評価を与えます。また、「青い風が吹いている」という文章を人工知能が作ったとします。この場合、文法的には正しいですが、意味が通じないため、低い評価を与えます。 同じ質問に対して人工知能が複数の回答を生成した場合、どの回答がより適切かを人間が判断する比較試験なども行われます。例えば、「明日の天気は?」という質問に対して、「晴れ」と「曇り時々晴れ」という二つの回答を人工知能が生成したとします。最新の気象情報と照らし合わせ、より適切な回答を人が選びます。 この方法の利点は、人間の感覚や判断力に基づいて評価できるため、人工知能の出力の質を全体的に判断できることです。つまり、言葉の正しさだけでなく、内容の面白さや創造性なども含めて評価できるということです。 しかし、評価する人によって判断の基準が異なる場合があり、公平な評価が難しいという課題もあります。例えば、ある人は「青い風が吹いている」という表現を詩的だと高く評価するかもしれませんが、別の人は意味がわからないと低く評価するかもしれません。 さらに、評価に時間と費用がかかるため、大量の情報を評価するには向きません。人工知能の性能をさらに向上させるためには、人の手による評価と他の評価方法を組み合わせることが重要です。人の手による評価は、人工知能が作る文章の質を最終的に判断する上で重要な役割を担っています。
アルゴリズム

アムダールの法則:並列処理の限界

計算機の処理を速くするには、複数の処理装置を同時に使って仕事を分担させる方法があります。これを並列処理と言います。もし全ての処理を分担できたら、処理装置の数だけ処理速度も上がるはずです。しかし、実際にはプログラムの一部は分担できない場合があります。例えば、処理の最初と最後で必要な準備やまとめの作業などです。アムダールの法則は、このような並列処理による速度向上の限界を計算する方法です。この法則は、計算機の処理全体を分担できる部分と分担できない部分に分け、分担できる部分の割合と処理装置の数を使って、どれだけ処理速度が向上するかを計算します。 具体的には、全体の処理時間を1とした時、分担できる部分をP、分担できない部分を1-Pと表します。そして、N個の処理装置を使った場合の処理時間は、分担できない部分の処理時間1-Pと、分担できる部分の処理時間PをNで割ったものの和で表されます。つまり、1-P + P/N が並列処理後の処理時間です。元の処理時間は1なので、並列処理によって処理速度がどれだけ向上したかは、1をこの処理時間で割ることで計算できます。これがアムダールの法則です。 この法則を使うことで、処理装置の数を増やしても、分担できない部分のせいで速度向上には限界があることが分かります。例えば、プログラムの半分しか分担できない場合、処理装置をどれだけ増やしても、処理速度は2倍以上にはなりません。この法則は、1967年にジーン・アムダール氏によって提唱されました。当時から並列計算は行われていましたが、現代のように多くの処理装置を使った大規模な並列計算が当たり前になった現在においても、アムダールの法則は処理速度向上のための指針となる重要な法則です。プログラムを設計する際には、アムダールの法則を念頭に置いて、並列処理に適した構造にすることが重要です。そうすることで、処理装置の数を増やしたときに、より効果的に処理速度を向上させることができます。
AI活用

AIリーダーボード:性能比較ランキング

様々な人工知能の模型や計算方法の良し悪しを評価し、比べられるように順位付けしたものがリーダーボードです。これは、特定の基準となる試験や課題に対する人工知能模型の成績を並べて示すことで、どの模型が最も良い結果を出しているかをすぐに理解できるようにしたものです。例えるなら、人工知能模型の競技会のようなもので、色々な開発者や研究者が作った模型が競い合います。 リーダーボードを見ることで、人工知能技術の進歩を促すことができます。なぜなら、開発者たちは他の開発者の成果を参考に、さらに良い模型を作ろうと努力するからです。また、開発者にとっての指標や目標設定にも役立ちます。自分の作った模型がどの程度の位置にいるのか、他の優れた模型と比べて何が足りないのかを把握することで、今後の開発方針を立てることができます。 リーダーボードには、特定の課題や情報集に特化したものから、幅広い用途に使えるものまで、様々な種類があります。例えば、画像認識に特化したリーダーボードもあれば、自然言語処理全般を対象としたリーダーボードもあります。また、誰でも見られるように公開されているものと、限られた仲間内で共有されているものもあります。公開されているリーダーボードは、より多くの開発者に参加を促し、技術革新を加速させる効果があります。一方、限定されたグループ内で共有されているリーダーボードは、特定の技術分野に特化した研究開発を促進するのに役立ちます。