アルゴリズム ベクトル自己回帰モデル入門
いくつもの情報が、まるで糸が絡み合うように影響し合い、時間とともに変化していく様子を思い浮かべてみてください。例えば、気温が上がると、冷たいお菓子の売れ行きが良くなるだけでなく、冷たい飲み物の需要も増えるでしょう。また、天気予報で雨が予想されれば、傘の売上が伸びるかもしれません。このような複雑に絡み合った関係を、きちんと理解し、将来を予測するための強力な道具が、ベクトル自己回帰モデル、略してVARモデルです。
VARモデルは、複数の時間の流れに沿って変化するデータの間の相互作用を分析します。気温、アイスクリームの売上、冷たい飲み物の販売量といった、それぞれが影響し合う複数のデータをまとめて扱うことで、それぞれのデータが他のデータにどのように影響を与え、また、どのように影響を受けているのかを明らかにすることができます。
例えば、過去の気温、アイスクリームの売上、冷たい飲み物の販売量のデータを使ってVARモデルを作ると、気温の変化がアイスクリームの売上にどれくらい影響を与えるのか、そしてその影響がどれくらいの時間遅れで現れるのかといった関係性を数値で捉えることができます。また、アイスクリームの売上と冷たい飲み物の販売量の間にも同様の関係性を明らかにできます。
VARモデルを使うことで、将来の気温の変化がアイスクリームの売上や冷たい飲み物の販売量にどう影響するかを予測することも可能になります。これは、商品の仕入れ計画や販売戦略を立てる上で非常に役立ちます。
このように、VARモデルは、複数のデータの複雑な関係性を解き明かし、将来の予測を立てるための強力な分析手法と言えるでしょう。ビジネスの意思決定はもちろんのこと、経済予測や社会現象の分析など、様々な分野で活用されています。
