アルゴリズム ROC曲線とAUC:モデル精度の評価
「受信者動作特性曲線」を縮めて「ROC曲線」と呼びます。これは、二つの選択肢から一つを選ぶ問題で、作った予測の仕組みの良し悪しを確かめるために使われる図です。この図は、縦軸と横軸にそれぞれ特別な割合を示すことで描かれます。縦軸は「真陽性率」と呼ばれ、実際に正解が「陽性」であるものの中で、正しく「陽性」と予測できたものの割合を示します。例えば、病気の人を診断する際に、実際に病気の人の中で、正しく病気だと診断できた人の割合です。横軸は「偽陽性率」で、実際は正解が「陰性」であるものの中で、間違えて「陽性」と予測してしまったものの割合を指します。病気でない人を診断する際に、健康な人の中で、誤って病気だと診断してしまった人の割合です。
ROC曲線は、これらの割合を使うことで、予測の仕組みがどれくらい正確に「陽性」と「陰性」を区別できるかを目に見える形で示してくれます。この曲線は、様々な判定の基準での予測の仕組みの働きを一度にまとめて見せてくれます。判定の基準とは、例えば、ある検査値を境に病気か健康かを判断する場合の、その境目の値のことです。ROC曲線は、この境目の値を変えたとき、予測の仕組みの働きがどう変わるかを曲線で表しています。ROC曲線を見ることで、特定の境目の値に左右されずに、予測の仕組み全体の良し悪しを理解できるのです。つまり、様々な状況に対応できる予測の仕組みかどうかを判断するのに役立ちます。これは、様々な状況で使える、より信頼性の高い予測の仕組みを作るために非常に重要な情報となります。
