交差検証

記事数:(7)

学習

交差検証でモデルの精度を確かめる

機械学習の分野では、作った予測模型がどれほど使えるものなのかを確かめることがとても大切です。この確かめ方の一つに、交差検証と呼ばれるやり方があります。交差検証を使う一番の目的は、限られた学習データを最大限に活用して、模型の汎化性能を正しく評価することです。汎化性能とは、未知のデータに対しても、模型がどれほど正しく予測できるかを示す能力のことです。 交差検証は、持っている学習データをいくつかのグループに分け、順番にそれぞれのグループを検証用のデータとして使い、残りのグループを学習用のデータとして模型を作る、という手順で行います。例えば、データを五つのグループに均等に分けたとしましょう。まず、最初のグループを検証用データ、残りの四つのグループを学習用データとして模型を作ります。次に、二番目のグループを検証用データ、それ以外の四つのグループを学習用データとして、また模型を作ります。これを五回繰り返すと、全てのグループが一度ずつ検証用データとして使われることになります。 このようにして作った五つの模型の性能を平均することで、特定のデータの分け方による偏りを減らし、より確かな評価結果を得ることができるのです。例えば、たまたま学習用データに特徴的なデータが多く含まれていた場合、そのデータに特化した模型ができてしまう可能性があります。しかし、交差検証を行うことで、そのような偏りを抑え、様々なデータで模型の性能を検証することができるため、未知のデータに対してもきちんと予測できる、より信頼性の高い模型を作ることができるのです。つまり、交差検証は、限られたデータから、より多くのことを学び取り、より優れた模型を作るための、有効な手段と言えるでしょう。
学習

ホールドアウト検証と交差検証

機械学習の分野では、作り上げた計算手順の良し悪しをきちんと測ることがとても大切です。そのために、「ホールドアウト検証」という方法がよく使われます。この方法は、持っている全ての情報を「学習用」と「確認用」の二つに分けることから始まります。 例えるなら、試験勉強のようなものです。教科書を使って勉強するのが「学習用」の情報を使う段階です。そして、実際に試験を受けて実力を試すのが「確認用」の情報を使う段階です。ホールドアウト検証では、計算手順に「学習用」の情報だけを与えて覚えさせます。ちょうど、教科書の内容だけを使って勉強するのと同じです。 学習が終わったら、「確認用」の情報を使って、計算手順がどれくらいきちんと覚えたかを調べます。これは、試験を受けて点数を出すのと同じです。計算手順は「学習用」の情報しか見ていないので、「確認用」の情報に対する結果は、全く知らない情報に直面した時の結果を反映していると考えられます。 このように、「確認用」の情報で試すことで、計算手順の本当の力、つまり新しい情報にも対応できる力を測ることができるのです。この力は「汎化性能」と呼ばれます。未知の問題に対する点数が良ければ、教科書の勉強方法が優れていたと言えるように、汎化性能が高ければ、その計算手順は新しいデータにも上手く対応できると言えるでしょう。 ホールドアウト検証は、この試験勉強と試験の関係によく似ています。「学習用」の情報は教科書、「確認用」の情報は試験問題、そして計算手順の良し悪しは試験の点数にそれぞれ例えることができます。このように、全く新しいデータに対する性能を評価することで、その計算手順がどれくらい信頼できるかを判断することができるのです。
学習

k分割交差検証で精度向上

機械学習の模型の良し悪しを見極める作業は、限られた資料をうまく活用するために欠かせません。様々な手法がありますが、その中で「交差検証」と呼ばれるやり方は、模型の本当の力をより正確に測るための優れた方法です。特に、資料を均等に分割して検証する「k分割交差検証」は、広く使われています。 この手法では、まず手元にある資料を同じ大きさのk個のグループに分けます。たとえば、資料が100個あって、kを5に設定すると、20個ずつのグループが5つできます。次に、これらのグループの中から一つを選び、これを試験用の資料として取っておきます。残りのk-1個のグループは全てまとめて、模型の訓練に使います。kが5の場合は、5つのグループのうち1つを試験用、残りの4つを訓練用とするわけです。 この訓練と試験をk回繰り返します。k回目の検証が終わる頃には、それぞれのグループが一度ずつ試験用の資料として使われたことになります。つまり、全ての資料が模型の訓練と試験の両方に役立ったことになり、限られた資料を無駄なく使えるわけです。 分割数であるkの値は、状況に合わせて自由に決めることができます。ただし、一般的には5か10が使われることが多いです。kの値が小さいと、検証の回数が少なくなり、計算の手間は省けますが、検証結果のばらつきが大きくなる可能性があります。逆にkの値が大きいと、検証の精度が上がりますが、計算に時間がかかります。k分割交差検証を使うことで、限られた資料を最大限に活かし、模型の性能をより確実に見積もることができます。
学習

ホールドアウト検証と交差検証

機械学習の分野では、作った模型がどれほど役に立つかを確かめることがとても大切です。そのための方法の一つに、ホールドアウト検証というものがあります。ホールドアウト検証は、持っているデータを学習用とテスト用の2つに分けて使う方法です。 まず、集めたデータを2つのグループに分けます。ほとんどのデータは学習用として、模型の訓練に使います。残りのデータはテスト用として、訓練が終わった模型を試すために取っておきます。例えば、集めたデータを82の割合で分けるとすると、8割のデータで模型を鍛え、残りの2割で模型の実力を測ることになります。 この方法の利点は、手順が簡単で、計算に時間がかからないことです。しかし、注意すべき点もあります。学習用のデータに特定の特徴ばかりが含まれていると、模型がその特徴に偏って学習してしまうことがあります。これは、特定のデータに過剰に適応した結果、それ以外のデータにはうまく対応できない状態になり、過学習と呼ばれます。例えるなら、特定の地域の問題ばかり解いた生徒が、他の地域の問題が解けなくなるようなものです。 また、テスト用のデータの特徴に偏りがあると、模型の本当の実力を正しく測れないことがあります。これは、特定の地域の問題だけで生徒の能力を判断するようなもので、全体像を把握できません。ですから、データを学習用とテスト用に分ける際には、それぞれのグループが全体のデータの特徴をよく表しているように注意深く行う必要があります。偏りなくデータを分けることで、模型の真価をより正確に見極めることができます。
学習

交差検証でモデルの精度を高める

機械学習の分野では、作った模型がどれくらい使えるのかを正しく測ることがとても大切です。この測り方のひとつに、交差検証というものがあります。交差検証は、限られた学習の材料をうまく使い回し、模型が初めて見る材料に対してどれくらいうまく対応できるのかを調べる方法です。 模型を作るには、学習用の材料と、出来上がった模型を試すための材料の2種類が必要です。もし、材料を単純に2つに分けるだけだと、分け方によって模型の出来栄えの見積もりが大きく変わってしまうことがあります。例えば、たまたま学習用の材料に難しい問題ばかり集まってしまうと、模型は実際よりも悪いように見えてしまいます。逆に、簡単な問題ばかりだと、実際よりも良く見えてしまうかもしれません。 このような偏りをなくすために、交差検証を使います。交差検証では、材料をいくつかの組に分け、それぞれの組を順番にテスト用の材料として使います。例えば、材料を5つの組に分けるとしましょう。最初の組をテスト用、残りの4つの組を学習用として模型を作ります。次に、2番目の組をテスト用、残りの4つの組を学習用として、また模型を作ります。これを全ての組が1回ずつテスト用になるまで繰り返します。 このようにすることで、全ての材料が1回ずつテストに使われることになります。それぞれのテストの結果を平均することで、特定の分け方に偏ることなく、模型の性能をより正確に見積もることができます。これは、まるで色々な問題を解かせてみて、その平均点で模型の本当の力を測るようなものです。この方法のおかげで、新しい材料に対する模型の対応力をしっかりと確かめることができ、より信頼できる模型を作ることができるのです。
学習

k分割交差検証で精度向上

機械学習では、作った模型がどのくらい役に立つかを調べることが大切です。模型作りに使える資料は限られているため、その資料をうまく使って模型の良し悪しをきちんと評価しなければなりません。そこで分割検証というやり方が役に立ちます。分割検証は、限られた資料をいくつかの組に分け、模型の訓練と試しに使う方法です。 具体的には、例えば資料全体を五つの組に分けるとします。まず、五つの組のうちの一つを試しに使う資料として取っておきます。残りの四つの組を模型の訓練に使います。訓練が終わったら、取っておいた資料で模型を試します。これが一巡目です。次に、別の組を試し用の資料として取っておき、残りの四つの組で模型を訓練します。そして、取っておいた資料で模型を試します。これを五回繰り返すと、全ての組が一度ずつ試しに使われたことになります。それぞれの試しで模型の成績が分かりますので、五回の成績の平均を全体の成績として考えます。 このやり方の良いところは、限られた資料を全て訓練と試しに使える点です。もし、資料を訓練用と試し用に分けてしまうと、訓練に使える資料が減ってしまい、良い模型を作ることが難しくなります。分割検証では、全ての資料を訓練に使い、かつ全ての資料を試しにも使うため、資料を有効活用できます。 分割検証を使うことで、作った模型が初めて見る資料に対してもどのくらいうまく働くかを調べられます。つまり、模型の本当の力を正しく評価できるのです。このおかげで、より信頼できる機械学習模型を作ることが可能になります。
アルゴリズム

交差検証:機械学習の精度を高める手法

機械学習は、まるで人間のようにコンピュータに学習させる技術です。学習のためには多くのデータが必要です。しかし、集めたデータ全てを学習に使うと、新しいデータに対する予測精度、いわゆる汎化性能を測ることができません。そこで、交差検証という手法が用いられます。 交差検証は、限られた量のデータを有効に活用して、モデルの汎化性能を評価する統計的手法です。具体的には、集めたデータをいくつかのグループに分けます。そして、あるグループを学習用データ、残りのグループを検証用データとして扱います。まず、学習用データを使って機械学習モデルを学習させます。次に、学習済みモデルに検証用データを入力し、予測精度を評価します。 この手順を、検証用データとして使うグループを変えながら繰り返します。例えば、データを5つのグループに分けるとすると、それぞれのグループが1回ずつ検証用データとなります。それぞれの検証における予測精度を平均することで、モデルの全体的な予測性能を評価できます。 交差検証は、モデルの過学習を防ぎ、未知のデータに対する予測性能をより正確に見積もるために役立ちます。過学習とは、学習用データに特化しすぎてしまい、新しいデータに対する予測精度が低下する現象です。交差検証によって、過学習の度合いを確認し、モデルの調整を行うことができます。 このように、交差検証は機械学習モデルの信頼性を高める上で重要な役割を果たしています。交差検証によって得られた汎化性能は、モデルが実際に運用された際の性能を予測する上で重要な指標となるのです。