グローバルアベレージプーリング

記事数:(2)

アルゴリズム

全体平均値で繋ぐ賢さ:グローバルアベレージプーリング

画像を認識する時によく使われる技術に、全体平均値を計算する方法があります。これは、畳み込みニューラルネットワークという仕組みの中で、最後の層あたりで使われます。この方法は、画像の特徴を表すたくさんの小さな区画(これを特徴マップと言います)それぞれについて、全体の平均値を計算するものです。 特徴マップは、縦と横の小さな点(ピクセル)の集まりでできています。例えば、縦が7ピクセル、横が7ピクセルの特徴マップを考えてみましょう。この中には、明るさや色の濃淡など、様々な特徴が入り混じっています。全体平均値を求めるには、この49個のピクセルの値を全て合計し、49で割ります。これで、この特徴マップ全体の平均値が計算できます。 特徴マップは複数枚あり、それぞれ異なる特徴を表しています。例えば、一枚目が輪郭の特徴を、二枚目が色の特徴を表しているといった具合です。これらの全ての特徴マップに対して同じ計算を繰り返すことで、それぞれの代表値を得ることができます。 従来の方法では、全結合層というものが使われていました。これは、全ての特徴マップの全てのピクセルを、次の層の全ての点に繋げるという複雑な方法です。そのため、調整すべき値(パラメータ)の数が膨大になってしまい、計算に時間がかかっていました。全体平均値を使う方法では、特徴マップ一枚につき一つの代表値しか使わないので、パラメータの数を大幅に減らすことができます。これにより、計算の負担を軽くし、処理速度を向上させることができるのです。また、不要な細かい情報に惑わされにくくなり、画像認識の精度を向上させる効果も期待できます。
アルゴリズム

全体平均値の活用法:画像認識の効率化

画像を認識する技術において、畳み込みニューラルネットワークという手法は広く使われています。この手法は、画像の特徴を捉える部分と、捉えた特徴を元に画像を分類する部分の二つの主要な部分から成り立っています。特徴を捉える部分は、畳み込み層と呼ばれ、画像の模様や形といった特徴を抽出する役割を担います。そして、分類する部分は全結合層と呼ばれ、抽出された特徴を元に、例えば「これは猫の画像だ」といった判断を行います。 しかし、この全結合層は、膨大な数の繋がりを持っているため、計算に時間がかかり、さらに学習データに過剰に適応してしまう「過学習」という問題も引き起こしやすいという欠点があります。そこで、これらの問題を解決するために、全体平均値を使ったグローバルアベレージプーリング(全体平均値集合)という手法が用いられます。 この手法は、特徴マップと呼ばれる、畳み込み層で抽出された特徴を表す数値の集合の、全ての値の平均値を計算することで、特徴マップを一つの値にまとめます。例えば、猫の耳の特徴を表す特徴マップ全体の平均値を計算することで、その特徴の強さを一つの数値で表すことができます。このようにして、多くの数値を一つの値に置き換えることで、全結合層の繋がりの数を大幅に減らすことができます。その結果、計算にかかる時間が短縮され、過学習も抑えられ、より効率的に画像認識を行うことができるようになります。つまり、全体平均値を使うことで、複雑な計算を簡略化し、より正確な画像認識を実現できるのです。