F1値

記事数:(2)

アルゴリズム

マイクロF1値:精度評価の基礎

機械学習の分類モデルを評価する大切な指標の一つに、マイクロF値というものがあります。このマイクロF値は、分類モデルがどのくらい正確に分類できているかを示す数値です。分類モデルは、例えば写真を見てそれが何であるかを判断する画像認識や、迷惑メールを見分けるスパムメール検知など、様々な場面で使われています。これらのモデルが良い働きをしているかを調べるには、予測の正しさを評価する必要があります。マイクロF値は、まさにこの正しさを測るためのものです。 マイクロF値は、実際の結果とモデルが予測した結果が、どのくらい一致しているかを数値化したものです。具体的には、全体データの中で、正しく positive と予測できた数(真陽性)、間違って positive と予測した数(偽陽性)、本当は positiveなのに間違って negative と予測してしまった数(偽陰性)の三つの数から計算します。これらの数を用いることで、モデルの全体的な正確さを評価できます。 マイクロF値は、0から1までの値を取ります。値が1に近いほど、モデルの性能が良いとされます。例えば、マイクロF値が0.95のモデルは、0.7のモデルよりも正確な分類を行えていると判断できます。つまり、マイクロF値が高いモデルは、より正確な分類を行えていると言えるのです。これは、様々な分類モデルを比較する際に非常に役立ちます。より高いマイクロF値を持つモデルを選択することで、より信頼性の高い結果を得られる可能性が高まります。そのため、マイクロF値は、分類モデルの性能を測る上で重要な指標となっています。
アルゴリズム

マクロF1値で多クラス分類を評価

たくさんの種類に分ける問題で、作った模型がどれくらいうまく分類できるかを測る物差しの一つに、マクロF1値というものがあります。マクロF1値は、分類の正しさを示す値で、0から1までの間の数字で表されます。1に近いほど、その模型の分類能力が高いことを示しています。 分類問題では、模型がどれほど正確にそれぞれの場所にデータを分類できるかが大切です。しかし、種類ごとにデータの数が大きく違う場合、単純な正解率では模型の性能を正しく測れないことがあります。例えば、ある種類に属するデータが極端に少ない場合、その種類を全て無視して分類しても、全体の正解率は高く出てしまうことがあります。 マクロF1値を使うと、データ量の偏りに左右されずに、それぞれの種類の分類性能をまとめて評価できます。具体的には、まず種類ごとにF1値というものを計算します。F1値は、その種類の中でどれだけのデータを正しく分類できたかを示す値です。そして、計算したそれぞれのF1値を全て足し合わせ、種類の数で割って平均値を求めます。これがマクロF1値です。 つまり、マクロF1値は、少ない種類のデータも無視することなく、全ての種類の分類性能を平等に評価した結果と言えます。そのため、データの数が種類によって大きく異なるような分類問題で、模型の性能を正しく評価するために、マクロF1値は非常に役立ちます。