
マクロF1値で多クラス分類を評価
たくさんの種類に分ける問題で、作った模型がどれくらいうまく分類できるかを測る物差しの一つに、マクロF1値というものがあります。マクロF1値は、分類の正しさを示す値で、0から1までの間の数字で表されます。1に近いほど、その模型の分類能力が高いことを示しています。
分類問題では、模型がどれほど正確にそれぞれの場所にデータを分類できるかが大切です。しかし、種類ごとにデータの数が大きく違う場合、単純な正解率では模型の性能を正しく測れないことがあります。例えば、ある種類に属するデータが極端に少ない場合、その種類を全て無視して分類しても、全体の正解率は高く出てしまうことがあります。
マクロF1値を使うと、データ量の偏りに左右されずに、それぞれの種類の分類性能をまとめて評価できます。具体的には、まず種類ごとにF1値というものを計算します。F1値は、その種類の中でどれだけのデータを正しく分類できたかを示す値です。そして、計算したそれぞれのF1値を全て足し合わせ、種類の数で割って平均値を求めます。これがマクロF1値です。
つまり、マクロF1値は、少ない種類のデータも無視することなく、全ての種類の分類性能を平等に評価した結果と言えます。そのため、データの数が種類によって大きく異なるような分類問題で、模型の性能を正しく評価するために、マクロF1値は非常に役立ちます。