
画像認識精度向上のためのランダム消去
物の見分け方を機械に教える学習では、たくさんの絵が必要になります。しかし、いつも十分な絵を集められるとは限りません。そこで、少ない絵からより多くの学びを得るための工夫が考えられています。ランダム消去はその一つで、絵の一部をわざと隠すことで、学習効果を高める方法です。隠す方法は、まず絵の上に四角い領域をいくつか作ります。この四角は、大きさ、位置、色がそれぞれバラバラです。そして、この四角で隠された部分は、機械には見えなくなります。まるで、絵の一部に紙が貼られて隠されているような状態です。このように一部を隠すことで、機械は隠されていない部分から全体像を推測する訓練をします。例えば、猫の絵で考えてみましょう。耳や尻尾といった目立つ部分だけが重要なのではなく、体全体の模様や形も猫を見分けるには大切な情報です。もし耳が隠されていても、他の部分から「これは猫だ」と判断できるのが理想です。ランダム消去はこのような学習を助けます。隠された部分に惑わされず、全体をよく見て判断する能力を機械に身につけさせるのです。具体的には、隠す四角の中の色の値を、色々な値で置き換えます。これは、一部分の情報が抜けていても正しく判断できるようにする訓練になります。現実の世界では、物の一部が影になったり、他の物で隠れたりする場面はよくあります。ランダム消去は、このような状況でも正しく物を見分けられるように機械を鍛えるのに役立ちます。しかも、この方法は手間がかからず、簡単に使えるため、色々な物の見分け学習に広く使われています。