
最適な構造探す:ニューラルアーキテクチャサーチ
近年、深層学習技術が急速に進歩し、絵や写真を見分ける技術や、言葉を理解し扱う技術など、様々な分野で素晴らしい成果が出ています。この深層学習の中心となるのが、人間の脳の神経回路網を模したニューラルネットワークと呼ばれる仕組みです。このニューラルネットワークの構造次第で、その性能は大きく変わってきます。
これまで、ニューラルネットワークの構造は、主に研究者や技術者の経験と勘によって設計されてきました。いわば、職人技によって一つ一つ丁寧に作り上げてきたのです。しかし、より複雑で難しい問題を解決するためには、より高度で複雑な構造のニューラルネットワークが必要となります。従来の方法では、そのような複雑な構造を人間の手で設計するのは限界があります。時間も労力もかかりすぎるからです。
そこで、ニューラルネットワークの構造自体を自動的に作り出す技術が注目を集めています。それがニューラルアーキテクチャサーチ(NAS)と呼ばれる技術です。NASは、様々な構造のニューラルネットワークを自動的に生成し、その性能を評価することで、最適な構造を見つけ出すことができます。人間が試行錯誤を繰り返すよりもはるかに効率的に、高性能なニューラルネットワークを開発できる可能性を秘めているのです。NASによって、これまで人間が想像もしなかったような、革新的な構造のニューラルネットワークが発見されるかもしれません。そして、その革新的なニューラルネットワークが、様々な分野でさらなる発展を促すことが期待されています。例えば、医療分野での画像診断の精度向上や、より自然で人間らしい会話のできる人工知能の開発など、NASの応用範囲は非常に広いです。