
平均二乗誤差:回帰分析の基礎
機械学習では、学習した予測モデルの良し悪しを判断する方法が必要です。この良し悪しを測る物差しの一つに、二乗誤差というものがあります。二乗誤差は、予測モデルがどれくらい正確に予測できているかを測るための重要な指標です。
具体的には、まず予測モデルを使って値を予測します。そして、その予測値と実際の値との差を計算します。この差が小さいほど、予測が正確だったことを示します。しかし、単純な差をそのまま使うのではなく、差を二乗してから使うのが二乗誤差の特徴です。
なぜ二乗するかというと、二乗することによって、大きなずれの影響をより強く反映させることができるからです。例えば、実際の値が10で、予測値が8の場合、差は2です。この差を二乗すると4になります。一方、予測値が5だった場合、差は5で、二乗すると25になります。このように、予測値が実測値から遠ざかるほど、二乗誤差の値は急激に大きくなります。つまり、二乗誤差は、小さなずれよりも大きなずれをより重視する指標と言えるでしょう。
さらに、全てのデータ点について二乗誤差を計算し、その平均を求めることで、平均二乗誤差(平均自乗誤差ともいいます)を算出できます。この平均二乗誤差は、モデル全体の予測精度を評価する際に広く使われています。平均二乗誤差が小さいほど、モデルの予測精度が高いと判断できます。つまり、より正確な予測モデルであると言えるのです。