
マイクロ平均:全体像を捉える評価指標
「マイクロ平均」とは、機械学習の分類問題で、モデルの良し悪しを測る大切な指標のことです。 特に、複数の種類に分けたいときに役立ちます。正解と不正解を数えることで、モデルの性能を調べます。似ている言葉に「マクロ平均」がありますが、両者は違います。マイクロ平均は、全てのデータをまとめて、一つの大きなグループとして扱います。 正解の数、不正解の数を全体で数え、そこからモデルの正確さなどを計算します。それぞれの種類の良し悪しは気にせず、全体的な性能を重視するのが特徴です。
例えば、犬、猫、鳥の絵を分類するモデルを考えます。犬の絵が100枚、猫の絵が50枚、鳥の絵が10枚あるとします。マイクロ平均では、この160枚の絵をまとめて考えます。犬、猫、鳥、それぞれの分類の正確さを個別に計算するのではなく、160枚全体でどれくらい正確に分類できたかを計算します。
マイクロ平均を使う大きな利点は、データの偏りに強いことです。 例えば、鳥の絵が10枚しかないと、鳥の分類の精度は、全体の精度にあまり影響を与えません。全体で160枚もあるので、10枚は少ない割合だからです。もし、それぞれの種類の精度を平均するマクロ平均を使うと、鳥の分類の精度が低くても、全体の精度に大きく影響してしまいます。
データの偏りが大きい場合、マイクロ平均は、全体的な性能を把握するのにとても役立ちます。 特に、現実世界の問題では、データの数が種類によって大きく異なることがよくあります。そのような場合に、マイクロ平均は、偏りに惑わされずに、モデルの真の性能を評価するのに役立ちます。つまり、マイクロ平均は、全体像を把握するための指標として、モデルの性能を測る上で重要な役割を果たすのです。