Few-shot

記事数:(2)

LLM

プロンプトエンジニアリングとは?

近年、人工知能(AI)技術は目覚ましい発展を遂げ、私たちの暮らしを大きく変えつつあります。特に、人間が書いたような自然な文章を作成する技術は、目覚ましい進歩を見せています。文章の生成だけでなく、翻訳や質問への回答といった高度な処理も可能になり、様々な分野で活用が始まっています。この技術の中核を担うのが、大規模言語モデルと呼ばれるものです。膨大な量の文章データを学習することで、まるで人間のように言葉を使うことができるようになりました。 しかし、AIの能力を最大限に引き出すためには、適切な指示を与えることが不可欠です。あいまいな指示では、AIは期待通りの結果を出せません。まるで、料理人にレシピを教えずに美味しい料理を作ってほしいと頼むようなものです。そこで重要になるのが、プロンプトエンジニアリングと呼ばれる技術です。プロンプトエンジニアリングとは、AIに与える指示を設計し、最適化する技術のことです。具体的には、どのような言葉で、どのような順番で指示を与えるか、どのような情報を加えるかなどを工夫することで、AIからより正確で、より望ましい結果を引き出すことができます。 プロンプトエンジニアリングは、AI活用における重要な鍵と言えるでしょう。適切な指示によって、AIは秘められた能力を発揮し、私たちの生活をより豊かにしてくれるはずです。例えば、顧客からの問い合わせに自動で回答するシステムや、大量の文書を要約するシステムなど、様々な場面で活用が期待されています。プロンプトエンジニアリング技術の進歩は、AIの更なる普及と発展に大きく貢献していくことでしょう。
LLM

少ない例で賢く学習:Few-shot

近年の技術革新により、人工知能は目覚ましい発展を遂げてきました。この発展を支えているのが、膨大な量の情報を用いた学習です。まるで、多くの経験を積むことで賢くなる人間のように、人工知能も多くの情報を学習することで精度を高めていきます。しかし、現実には十分な量の情報を集めることが難しい、あるいは情報収集に多大な費用がかかるといった問題が存在します。 このような問題を解決する手段として、近年注目を集めているのが「少ない例」から学習する手法です。この手法は、限られた情報からでも一定の成果を得られるよう工夫されており、情報収集の手間を大幅に減らすことができます。従来の方法では、大量の情報を用いて人工知能を訓練しなければ高い精度は期待できませんでした。いわば、多くの経験を積まなければ一人前になれない職人のようなものです。しかし、この「少ない例」から学習する手法は、従来の方法とは全く異なるアプローチであり、少ない情報からでも高い精度を実現できる可能性を秘めています。 具体的には、既に学習済みのモデルをわずかな追加情報で微調整する方法や、少ない情報でも効率的に学習できる特別な仕組みを組み込む方法など、様々な工夫が凝らされています。まるで、熟練の職人が少しの手ほどきで新しい技術を習得するかのようです。このように、「少ない例」から学習する手法は、情報収集の負担を軽減しながら人工知能の性能向上を図る、画期的な技術として期待されています。今後の更なる発展により、様々な分野での応用が期待されます。