
次元の呪い:高次元データの罠
機械学習では、様々な情報をもとに予測を行います。これらの情報のひとつひとつを次元と呼びます。例えば、家の値段を予測する際には、家の広さ、築年数、駅からの距離といった情報が次元となります。これらの情報が多いほど、より正確な予測ができると考えるのは自然な発想です。しかし、現実はそう簡単ではありません。次元の数が増えるほど、正確な予測に必要なデータ量が膨大に増えてしまうのです。この現象こそが、次元の呪いと呼ばれています。
例を挙げると、広さのみを考慮する場合、100平方メートルごとに区切れば、ある程度の精度で価格帯を予測できるかもしれません。しかし、築年数も考慮するとなると、10年ごとに区切り、広さと築年数の組み合わせごとにデータを用意する必要があります。さらに駅からの距離も加えると、1キロメートルごとに区切り、三つの情報の組み合わせごとにデータが必要になります。このように次元が増えるごとに、必要なデータ量は掛け算式に増えていくのです。
高次元空間では、データはまばらに存在するとイメージしてみてください。限られた数のデータでは、広大な空間を埋め尽くすことはできません。そのため、データとデータの間の空白部分が大きくなり、正確な予測をするのが難しくなります。地図上に家が数軒しかない状態で、他の場所の価格を予測するのは困難です。より多くの家、つまりデータがあれば、精度の高い予測が可能になるでしょう。
次元の呪いは、機械学習において重要な課題です。高次元データを用いる際には、この呪いを意識し、適切な対処法を検討する必要があります。例えば、本当に必要な次元を取捨選択する、あるいは次元を減らす工夫をするなど、様々な方法があります。限られたデータから最大の効果を得るためには、次元の呪いを理解し、適切な対策を講じることが不可欠なのです。